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Executive Summary:  
PV performance models are used to quantify the value of PV plants in a given location.  
They combine the performance characteristics of the system, the measured or predicted 
irradiance and weather at a site, and the system configuration and design into a 
prediction of the amount of energy that will be produced by a PV system.  These 
predictions must be as accurate as possible in order for finance charges to be 
minimized.  Higher accuracy equals lower project risk.  The Increasing Prediction 
Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV 
system performance models.  This is accomplished by: 
(1) Systematically analyzing uncertainty in models used to predict PV energy production 
using research-quality data in various climates. These analyses will inform efforts to 
improve various models and can identify which models, if improved, offer the greatest 
potential improvements in prediction accuracy. 
(2) Leading an international collaborative (PVPMC) to improve the practice of PV 
modeling through information sharing and research collaboration, to document existing 
and emerging modeling algorithms, and to make available open-source code for PV 
performance modeling. 
(3) Making targeted improvements to models and to methods for technology 
characterization that can improve the accuracy of output predictions for concentrating 
photovoltaic (CPV) technologies and systems.  
(4) Developing new data acquisition and analysis methods that can extract more 
information from PV monitoring systems and data streams. 
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Task 1: End-to-End PV Performance Model Uncertainty Assessment 
Background:  As the photovoltaic (PV) industry continues to mature and incentives are 
reduced, investment in PV increasingly depends on the confidence that can be placed 
in predictions of the energy yield. Predicting energy yield requires use of a sequence of 
models, e.g., to translate measured irradiance to the system’s plane-of-array, to 
estimate cell temperature, and to predict DC power for given conditions. Uncertainty in 
these models and their inputs arises from a variety of sources, including measurement 
errors, inexact model specification, and from the necessarily finite data used to calibrate 
models. In aggregate, these uncertainties contribute to uncertainty in predicted energy 
yield. Therefore, to understand what confidence can be placed in energy yield 
predictions, to identify how to improve model accuracy and to reduce prediction 
uncertainty, we must quantify the uncertainty introduced by each model and the effect of 
each model’s uncertainty on energy yield predictions.  
Previous analyses (e.g., Whitfield and Osterwald, 2001; Dominé et al., 2012; Dunn et 
al., 2012) generally examine the uncertainty in measured performance arising from the 
measurement processes themselves. For example, a detailed investigation of module 
performance uncertainties under natural sunlight including correction for irradiance and 
temperature was given by Whitfield et al (2001). The methodology was based on the 
analytical propagation of respective uncertainties using the Guide to the Expression of 
Uncertainty in Measurement (GUM) (ANSI, 1997). This methodology was used and 
expanded for long-term outdoor IV measurements for data of Northern latitude (Dominé 
et al., 2012). Dirnberger and Kraling (2013) provide a detailed analysis of uncertainty 
deriving from indoor measurements to determine module rating at standard test 
conditions (STC). Müller et al. (2015) compared measured and predicted performance 
of operating PV power plants over several years to quantify the uncertainty in predicted 
annual yield; they identified the solar resource and power reduction due to module 
degradation and/or soiling as the primary causes of differences between predicted and 
measured output. 
Many of these analyses are dependent on the assumptions inherent in the GUM, 
neglect correlations among uncertain quantities (e.g., Thevenard and Pelland, 2013), or 
have focused on individual model steps (e.g., Hansen et al., 2011). Ours is the first 
analysis of which we are aware that examines the models themselves, quantifies 
uncertainty empirically using time series of measured quantities thus preserving 
correlations among measured quantities, and propagates this uncertainty through the 
sequence of modeling steps. 
Task Objectives: PV performance modeling is comprised of a series of modeling steps 
as described in Figure 1. Uncertainties in PV performance predictions can be divided 
into two main categories: (1) uncertainties in the future solar resource and weather 
conditions, and (2) uncertainties related to models and data including: mathematical 
simplifications (derates) made in lieu of physically based submodels; variations between 
available modeling algorithms; inaccurate characterization data for system components; 
and simply leaving out whole steps in the modeling process (Figure 1). In a recent 
unpublished study by a large US module manufacturer and integrator, it was found that 
there is a 4% spread in the annual energy predictions made by a set of independent 
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engineers who were contracted to make predictions for the same project using the 
same solar resource and weather data. This discrepancy represents a significant 
opportunity for improvement in the industry.  
To analyze the contribution of each modeling step’s uncertainty to uncertainty in overall 
system performance, it is necessary to systematically go through each step and 
compare appropriate measurements to model predictions to quantify the uncertainty at 
each step. Sandia started this process in FY13 as the Integrated Framework for 
Analysis of Technical Risk project. This project developed and demonstrated a 
methodology for assessing and quantifying uncertainties at key steps in the PV 
performance modeling chain.  
 

 
Figure 1: Standard PV Performance Modeling Steps 

 
Task Results and Discussion: Uncertainties in PV performance modeling are detailed 
in SAND2015-6700, “Photovoltaic System Modeling: Uncertainty and Sensitivity 
Analysis.”  Here, an uncertainty and sensitivity analysis was completed that focused 
specifically on the models used to predict AC energy from photovoltaic systems. We 
considered a single system comprising 2493 First Solar modules connected to a 250 
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kW DC to AC inverter, located at Albuquerque, NM. We quantified uncertainty in the 
following modeling steps: 
− Translation from measured GHI, DNI and DHI to POA irradiance; 
− Estimation of effective irradiance (i.e., irradiance converted to electrical current); 
− Prediction of cell temperature from measured air temperature and wind speed; 
− Production of DC voltage and current from the module; 
− Estimation of array DC power loss due to module mismatch and to maximum power 

point tracking inaccuracy; 
− Estimation of DC-to-AC conversion efficiency.  
Our analysis involved several significant limitations: 

1. We do not consider uncertainty in the measurements that underlie the models 
nor the effect of measurement uncertainty on energy predictions. These effects 
are discussed in prior work (Whitfield and Osterwald, 2001; Dominé et al., 2012; 
and Dienberger and Kraling, 2013). If these effects were considered jointly with 
uncertainty in predictive models we believe that uncertainty in irradiance 
measurements in particular would be as influential (if not more so) than 
uncertainty in the models. 

2. Our analysis implicitly assumes that each model is well fit to appropriate data. A 
model with parameters that are poorly matched to performance data will exhibit 
bias that is not represented in our work. 

3. A number of features and processes important to accurate energy predictions are 
not considered in our work. For example, we assume uniform rather than 
spatially varying irradiance and temperature conditions across the PV array, and 
we do not consider soiling, degradation or damage to PV array components. We 
cannot conclude whether models of these processes are influential, or not, on 
uncertainty in energy prediction. 

Due to the complexity and correlations among each model’s parameters, we adopt an 
approach where we characterize the uncertainty in a model’s output by quantifying the 
distribution of each model’s residual, i.e., the difference between the model’s prediction 
and the true value, rather than the traditional approach of quantifying uncertainty in 
each model’s input parameters.  
We found that, given the uncertainties we considered, the overall uncertainty in 
predicted PV system output, i.e., daily energy, to be relatively small, on the order of 1%. 
We considered four alternative models for the POA irradiance modeling step; and found 
that variance in predicted PV system output is not greatly dependent on the choice of 
one of these models. However, we found that all POA irradiance models exhibited a 
systematic bias of upwards of 4% that depends on location, and that this bias translates 
proportionally to predicted energy. Thus, choice of a POA irradiance model implies a 
bias to some degree in the predicted output, but not a greater (or smaller) variance in 
the predictions. 
We performed a sensitivity analysis to relate uncertainty in the PV system output to 
uncertainty arising from each model. We found that uncertainty in the models for POA 
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irradiance and effective irradiance to be the dominant contributors to uncertainty in 
predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in 
PV system output predictions may yield the greatest improvements by focusing on the 
POA and effective irradiance models.  
The effects of uncertainty in transposition models are detailed in (Hansen et al., 2014) 
and (Lave et al., 2015) which resulted from work done by Sandia in the Solar Resource 
research project. Within this project we examined the impact of albedo on transposition 
model performance as reported in SAND 2015-8803, “Albedo and Diffuse POA 
Measurements to Evaluate Transposition Model Uncertainty.”  We used albedo and 
diffuse plane of array (DPOA) measurements in addition to more standard global 
horizontal irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal irradiance 
(DNI), and plane of array irradiance (POA) measurements to determine the impact of 
albedo on transposition model performance.  

Albedo measurements allowed for analysis of daily albedo and albedo trends. Albedo 
values at the test site in Albuquerque, NM were typically between 0.2 and 0.25, slightly 
larger than the common 0.2 assumption. Daily average albedo values did not appear to 
show seasonal trends, though they did appear to be related to relative humidity. Larger 
relative humidity values led to smaller daily albedo values.  

DPOA measurements allowed for comparison of calculated DPOA values (from POA 
and DNI) to measured DPOA values. A within-day difference was observed, and it is 
thus suspected that the POA instrument is not at due south azimuth. This shows the 
value to having interrelated measurements: without the DPOA measurement, it would 
have been much more difficult to identify errors in the POA measurement. For example, 
without the DPOA measurements it would have been difficult or impossible to 
differentiate an azimuth offset from changes in atmospheric conditions (e.g., increased 
water vapor in the afternoons could lead to decreased POA irradiance similar to the 
decrease caused by an azimuth offset). 
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Figure 2. Instrument used to measure diffuse plan of array (DPOA) irradiance at Sandia 
National Laboratories. 

When using measured albedo (averaging 0.214) versus fixed albedo of 0.2 in 
transposition models, little difference was seen – only about a 0.15% difference was 
seen in mean bias difference (MBD) and root mean squared difference (RMSD). 
Analysis at other fixed albedos showed that increasing albedo by 0.1 is found to 
increase total modeled insolation (and thus increase MBD) by approximately 1% for the 
irradiance time series and surface tilt studied. Thus, types of ground cover that are 
different from the gray gravel surrounding the albedometer in this study (e.g., persistent 
snow cover, black surfaces, etc.) could lead to significant (i.e., >1%) changes in MBD 
compared to the 0.2 albedo assumption.  
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Figure 3. Albedometer used to measure albedo at Sandia’s PSEL/RTC facility. 

While replacing measured albedo with fixed 𝑎𝑙𝑏𝑒𝑑𝑜 = 0.2 was found to have a small 
impact for the location studied, measurement deviations had a larger impact. Up to 2% 
differences in MBD and RMSD were observed when switching between interrelated 
measurements. For example, when DNI and DHI were used as inputs to the 
transposition models, and the transposition model output was compared to the POA 
measurement, the largest magnitude MBDs resulted. When using GHI and DNI as 
inputs and comparing to POA calculated from DPOA and DNI measurements, the 
MBDs were about 2% more positive, resulting in the lowest magnitude MBDs. 

Based on this analysis, it is recommended that, except in extreme cases of very high or 
very low albedo (e.g., due to persistent snow cover or black ground covering), plane of 
array irradiance modeling effort be directed towards quality controlling irradiance 
measurements and selecting a well-performing transposition model rather than 
collecting albedo measurements. 
Finally, the latest results of an ongoing study evaluating uncertainties due to irradiance 
sensors are detailed in “Indoor and Outdoor Evaluation of Global Irradiance Sensors.” 
(Driesse et al., 2015).  Global irradiance sensors supply essential information in the 
business of planning and operating PV Systems. Errors and uncertainty in irradiance 
measurements propagate to uncertainty about performance and profitability. PV 
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Performance Labs initiated the PVSENSOR project in 2014 to more fully characterize 
commercial irradiance sensors, with the objective of reducing such uncertainties. 
In the first phase of indoor testing we tested 21 pairs of instruments using multiple solar 
simulators (both pulsed & continuous, large area & small), environmental chambers, 
spectrally selective and neutral density filters, and corresponding reference instruments. 
The second phase has all sensors mounted outdoors on a two-axis tracker that is 
programmed to follow different trajectories while all sensor outputs are recorded. This 
paper provides selected results from both tests sets, highlighting differences between 
sensor categories. 
It is readily apparent from the indoor and outdoor test results thus far that the conditions 
under which irradiance measurements are taken, such as instrument temperature or 
angle of incidence, influence measurement error in systematic ways. Some of these 
systematic errors are clearly linked to instrument category, but differences within each 
category are apparent as well. For the most part the physical appearance of the 
instruments gives few clues to nature or magnitude of these errors, so systematic 
testing is required to identify them. 
Indoor and outdoor responsivity measurements show some variability that is more likely 
due to the particular operating conditions than to inaccurate manufacturer calibrations. 
However for the reference cells the conditions were tightly controlled and one 
manufacturer’s calibrations are clearly out of spec. 
The spectral response of the photovoltaic sensors is not inherently good or bad, but 
larger differences between sensors (or between a sensor and a PV system) will lead to 
larger mismatch between readings. This will be evaluated with measured outdoor 
spectra over the course of the extended monitoring period. Similarly, the response time 
of the thermal instruments is also not inherently good or bad. Faster response may 
however be useful when data are sampled and stored at high rates and also processed 
or evaluated at the same time resolution. This is more likely to happen in PV monitoring 
systems than other applications. 
Indoor measurements show that temperature strongly affects the responsivity of many 
instruments. We will verify these effects in outdoor tests and evaluate their impact on 
long-term averages in the extended monitoring phase. Angular response also varied 
considerably between instrument models and instrument categories in both indoor and 
outdoor tests. There is still room to improve the absolute accuracy of these 
measurements through better diffuse irradiance measurements, but comparisons 
between different sensors in the same category should be valid despite this.  
With phase one indoor testing complete and phase two outdoor testing well under way, 
the majority of the primary evidence has now been gathered. From this collection we 
are deriving individual characteristics and uncertainties associated with them. Phase 
three extended outdoor monitoring will provide corroborating evidence and opportunities 
to fine-tune the analysis.  
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Figure 4. PV Sensor irradiance test bed on the 2-axis tracker at Sandia.  
  



DE-EE0025798 
Increasing Prediction Accuracy 

Bruce King 
 

Page 12 of 27 
 

Task 2: Leadership of the PV Performance Modeling Collaborative (PVPMC) 
Background: Sandia National Laboratories initiated the PV Performance Modeling 
Collaborative (PVPMC) to create a forum for sharing methods, discussing needs, and 
documenting the body of knowledge required for PV performance modeling and to 
foster a culture of technical rigor and transparency within the PV performance modeling 
community.  Task 2 maintains and improves the PVPMC through FY15.  The PVPMC 
was started following the 1st PV Performance Modeling Workshop in 2010 where it was 
noted that much of the technical information about PV performance models was not 
readily available or collected in one place to be of general use the PV performance 
modeling community (Cameron et al., 2011).  Initially started as a website 
(http://pvpmc.org), interest in the effort has grown over the subsequent years.  The 
second workshop, held in May 2013 was organized as part of a PV Systems 
Symposium that included two additional events (PV O&M Workshop and the Inverter 
Reliability Workshop).  The modeling workshop was the best attended of the three 
events with 150 participants and identified a number of key areas where significant 
uncertainties still exist.  The 2013 Workshop was three times bigger than the 2010 
Workshop and established this workshop/conference as a nexus of information sharing 
on modeling advancements and needs in the industry.  In addition, in 2013 Sandia 
released a free Matlab library, PV_LIB, designed to facilitate research and education in 
PV system modeling. 
Since initiation of the PVPMC, no comparable effort has emerged.  Perhaps the most 
similar effort is pveducation.org, an online textbook assembled by faculty at the 
University of Arizona.  However, pveducation.org devotes more than 50% of content to 
device physics, and no code libraries are available with scope or content similar to 
PVLib.  nanoHUB.org offers an online course which is also heavily targeted to device 
physics rather than systems (Lundstrom et al., 2011).  PVPMC has been invited to 
provide tutorials at international conferences (40th IEEE PVSC in Denver, CO, in June 
2014, and at the 6th World Conference on Photovoltaic Energy Conversion in Kyoto, 
Japan in November 2014).  In addition, one international effort (IEA Task 13) has 
adapted its international outreach to conform to and leverage the PVPMC as a primary 
communication channel for PV system modeling. 
Task Objectives: Prior to the organization of the PV Performance Modeling 
Collaborative (PVPMC), PV performance model developers and users did not have a 
forum for sharing methods, discussing needs, and documenting the body of knowledge 
required to technically understand PV performance models.  This task is aimed at 
maintaining and improving communication of technical matters involved in PV system 
modeling, and to establish a culture of technical rigor and transparency within the PV 
performance modeling community.  This is accomplished through five outreach 
activities: 1) organization and co-hosting of the annual PV Performance Modeling 
Workshop, 2) hosting and maintenance of the PVPMC website, 3) development and 
maintenance of the open source PV_LIB Toolbox, hosted at the PVPMC website, 4) 
teaching at least one tutorial on PV performance modeling, typically in conjunction with 
the annual IEEE-PVSC, and 5) authoring the first graduate textbook dedicated to PV 
performance modeling.   
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Task Results and Discussion: Three PV Performance Modeling Workshops were co-
hosted by Sandia in 2013-2015.  This workshop series is the only such event that brings 
together all key stakeholders in the area of PV performance modeling.  The series has 
proven to be increasingly popular, growing by approximately 50 attendees each year.  
The 2015 PV Performance Modeling Workshop was held in Cologne, Germany on 
October 22-23, 2015.  This workshop was hosted by TUV Rheinland, Sandia National 
Laboratories, and IEA PVPS Task 13.  The workshop featured 35 presentations and, for 
the first time, a poster session with 13 posters.  Major observations from the workshop 
include; satellite irradiance models are getting better, two new spectral models were 
introduced, new spectral irradiance datasets are being developed and field monitoring 
practices still vary and need more standardization.   

 

Figure 5: 2015 PV Performance Modeling Workshop in Cologne, Germany 

Year Venue Co-host Attendance 
2013 Santa Clara, CA EPRI 100 

2014 Santa Clara, CA EPRI 150 

2015 Cologne, Germany TUV-Rheinland 215 

Table 1: FY13-15 PV Performance Modeling Workshops 
Additionally, three modeling tutorials were taught.  The tutorial is comprised of 1.5 hours 
of lecture presented on models and algorithms walking forward from irradiance data and 
translation to conversion to AC power, followed by 2 hours of hands-on coached 
tutorials in the PV_LIB software, using either Matlab or Python.  This tutorial has 
become a standard part of the tutorial sessions associated with IEEE-PVSC.  The 
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tutorial is a more focused educational event than the Workshop and emphasizes hands-
on instruction. 

Year Conference Location Attendance 
2014 40th IEEE-PVSC Denver, CO 30 

2014 6th WCPEC Kyoto, Japan 40 

2015 41st IEEE-PVSC New Orleans, LA 20 

Table 2: FY14-15 PV Performance Modeling Tutorials 
The PVPMC website, first launched in 2013, experienced a major update and moved to 
a more secure location behind Sandia’s firewall in late 2014.  The decision to perform 
these updates was made mid year to ensure that the ever increasing audience for this 
site (over 1,350 members) could safely interact with the content without incident well 
into the future.  The initial website did not anticipate the level of traffic and was not 
optimized to handle true collaboration between members.  The new site 
(www.pvpmc.sandia.gov) is designed to work more effectively for the increasing 
audience. 
The PV_LIB Toolbox continues to be a popular offering of the PVPMC.  In FY13 Sandia 
updated PV_LIB to version 1.1 to include many additional clear sky and incidence angle 
models from literature, capability for predicting PV output using single diode models, 
and a single axis tracker function. PV_LIB was updated to version 1.2 in FY14 to 
include several POA irradiance modeling functions, a new inverter model and to correct 
and improve various code elements. Over 800 users have downloaded this version. 
PV_LIB version 1.3 will be released early in FY16 and will provide a new effective 
irradiance model and to provide code to estimate parameters for single diode models 
(e.g., the CEC model and PVsyst) from measured IV curve data. 
A Python version of PV_LIB was launched in June of 2014 (Andrews et al., 2014).  The 
Python version enables users to make use of the algorithms without having to purchase 
any software (e.g., Matlab).  The package is available on GitHub at: 
https://github.com/Sandia-Labs/PVLIB_Python.  This package has quickly developed an 
active user community on the site with posted comments, issues, and new code 
additions.  Significantly, PV_LIB is becoming an important avenue for model developers 
to publish and disseminate their models rapidly.  Models can undergo testing and 
improvement by the PV modeling community as a whole.   
In 2014, we launched an effort to write a new textbook on Photovoltaic Performance 
Modeling.  We conducted a survey of recent textbooks in the subject area of PV 
performance and systems and identified only three relevant textbooks, none of which 
overlap much with our concept for a new textbook. 

• Photovoltaics: Fundamentals, Technology, and Practice by Konrad Mertins (2014) 
(Wiley).  This book translated from German is mostly conceptual in nature, with little 
emphasis on quantitative aspects of performance prediction. 
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• Photovoltaics System Design and Practice by Heinrich Häberlin (2012) (Wiley).  This 
translated book from German is a bit more detailed but lacks practical quantitative 
problems and examples.  The poor translation makes it quite difficult understand as 
an English speaker. 

• Solar Engineering of Thermal Processes by Duffie and Beckman (2006) (Wiley).  
This great book is in its third edition and is a valuable resource.  Unfortunately, 
photovoltaics and systems are not the focus of the book and are only covered in a 
single chapter; solar radiation material is covered in the beginning of the book.  This 
book does not go into the detail that is necessary for adequately training future solar 
PV engineers and scientists.  However, the rigor and depth of the book provide a 
good model to follow. 

Given that Wiley Publishers appear to be the only publisher in this area, we submitted a 
proposal to Wiley.  The proposal was accepted and the first draft of the book is due to 
the publisher in December 2015.  Four chapters were complete as of October 2015. 
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Task 3: CPV Performance Model 
Background: High concentrating photovoltaic (CPV) modules behave differently than 
standard flat plate modules. DC current can show a distinct dependence on spectral 
content due to the use of multi-junction cells, CPV modules can operate at very high 
(and difficult to measure) cell temperatures because of their use of concentrating optics, 
and CPV modules only use the direct beam component of the irradiance.  Analysis by 
Hansen and Riley (2013) of the performance of a high-x CPV module from Semprius 
indicated that the general structure of the Sandia Array Performance Model (SAPM) 
could serve as the basis for an accurate predictive model.  However, improvements 
were needed to account for the influence of spectral content on system current and to 
refine the cell temperature models. 
For low-X CPV systems, the general structure of the SAPM also appeared promising 
based on FY12 analyses. However, the anisotropic features that are characteristic of 
the design of this type of module complicate modeling plane-of-array (POA) irradiance.  
Low-x CPV modules exhibit distinct light acceptance angles in the transverse direction 
and some degree of reflectance loss along the longitudinal axis. No industry accepted 
method is currently available to accurately characterize these performance features. 
Task Objectives: The objectives of this Task are to extend, document, validate and 
promulgate methods for accurately modeling performance of concentrating photovoltaic 
(CPV) systems for both high- and low-concentration designs.  For high-concentration 
CPV, we will develop methods to account for the effects of spectral content on cell 
current and will refine cell temperature models.  For low-concentration CPV, we will 
promulgate a recommended industry best practice for characterizing light-acceptance 
and reflectance properties of these modules. 
Task Results and Discussion: In FY13, Hansen and Riley demonstrated the ability to 
modify the SAPM to more accurately predict the performance of an individual Semprius 
HCPV module (Hansen and Riley, 2013). We believe that the SAPM equation forms are 
adequate to address the differences between flat-plate PV and HCPV, particularly the 
differences that arise due to increased spectral sensitivity of HCPV cells.  Further work 
in FY14 confirmed this assertion. 
At the end of FY13, Sandia and Semprius collaborated to install a Semprius product on 
a test tracker at Sandia with the goal of providing system data for refinement of the 
Sandia PV Array Performance Model (SAPM) for CPV systems. We initially published a 
paper at the CPV-10 conference that described the ability of the standard SAPM to 
predict the power of the Semprius system (King et al., 2014).  However, the initial data 
acquisition system installed by Semprius consisted of only measurements from the PV 
inverter and we were unsuccessful at validating model performance with this data.  To 
address this limitation, a more advanced data acquisition system was installed in mid-
2014.  The system continued to be plagued by operational problems throughout FY14 
and well into FY15.  We experienced continued tracker failure during this period 
resulting in long periods of lost data.  As a result, we were ultimately unsuccessful at 
validating the predictive capability of the modified SAPM against system data.   
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A more successful activity involved methods to characterize the optical response of 
CPV modules.  This activity was enabled by the development and implementation of 
advanced tracker controls and pointing algorithms.  During FY14, we pursued a method 
to accurately characterize the isotropy (or anisotropy) of the electro-optical response of 
CPV modules (both high and low concentration) to solar angle of incidence (AOI). Initial 
work in this field required Sandia to develop a novel description for incident angle that 
includes both the solar incident angle and the direction that the incident angle takes 
relative to a CPV module’s face. We then described an algorithm to calculate the 
appropriate tracker pointing angles necessary to achieve a desired incident angle for an 
arbitrary sun position. The back-calculation of tracker pointing angles is a much more 
difficult problem than one might expect, which may explain why we could find no prior 
publications on the subject.  This work is detailed in SAND2014-3242, “Sun-Relative 
Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations,” and 
two follow-on publications. 
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Task 4: Novel PV Monitoring Methods and Strategies 
Background: Current PV system monitoring practices are focused on data collection 
rather than system health assessment and intelligence. The current trend within industry 
is to push into more extensive data gathering, both in terms of greater time resolution 
and increased sensor count.  This trend leads to higher initial costs, increased system 
complexity and greater potential for sensor failure.  Further, there are several technical 
limitations to the current PV monitoring practice. 
The first relates to the methods used to reduce the size - or decimate - sensor data.  
Traditionally, monitoring systems recorded data relatively infrequently (e.g., 15 min) as 
instantaneous values.  More recently, typical monitoring systems measure at higher 
frequency (e.g. 1 minute or even 1 second) but the trend is still to down sample to 
reduce the computational overhead associated with very large data files.  The most 
common method of down sampling the data is block averaging over a coarser time 
frame, still typically 15 minutes.  There are more sophisticated methods than block 
averaging for decimating data that will reduce the data rate while still allowing increased 
data resolution.  One example is data stream thresholding, in which only values that 
have changed by a certain amount are saved with a timestamp.  Fields that have 
benefitted from these methods include telecommunications and SCADA systems. 
The second opportunity is to use monitored sensor data to not only measure system 
performance (e.g., AC power, module temperature, etc.) but to also detect anomalous 
performance or component failures.  Uncertainty in modeled system power output is 
typically much larger than sensor precision, limiting its use as a real-time analytical tool.  
However, comparative measurements between sensors on systems or subsystems may 
be able to identify performance outliers.  A related known problem with monitoring 
systems is data dropouts and data noise.  These effects can be minimized through the 
interaction of multiple sensors or through the use of Kalman filters, Bayesian networks, 
and other filters operating on physical or simulated sensor signals created by real-time 
PV system models. 
Third, opportunities exist to develop and implement novel in-situ monitoring systems 
beyond the traditional passive measurement of voltage and current.  Advancements in 
solid-state electronics have made it possible to design and build compact and affordable 
solutions for directly measuring string and module IV curves on operating systems.   
Task Objectives: Current PV system monitoring practice is focused on data collection 
rather than system health assessment and intelligence.  This practice pushes the 
industry into more extensive data gathering (greater time resolution and more sensors), 
which raises initial costs, adds system complexity and increases potential failures.  The 
objective of this task is to perform a series of exploratory studies to determine if more 
advanced monitoring methods could increase the value of data from fewer sensors and 
thus save money. 
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Task Results and Discussion:  
High Frequency Monitoring of PV Systems 
A detailed assessment of high speed sampling and filtering is presented in SAND2014-
19137, “Sampling and Filtering in Photovoltaic System Performance Monitoring.”  In this 
study we investigated how the interplay between complex signals and the way in which 
they are measured can lead to errors in the data delivered by PV monitoring systems.  
To assess the signal complexity we acquired data of the most important signal types 
from a grid-connected PV system and associated weather instruments using a very high 
sampling rate (2,000 samples per second). In this high-resolution view of the signals we 
were able to observe various rapid fluctuations and we found explanations for the 
origins of many of them. The most prominent fluctuations were found to be caused by 
the active anti-islanding system, which caused periodic changes of AC current and 
power at intervals equal to 25 line cycles. The effect of this was also seen on the DC 
voltage and current signals. 

 
Figure 6. Frequency spectrum of DC current measurement showing effect of 60 Hz 
harmonics on the signal.  Notice a peak at 35.9 Hz, which is caused by the inverters 

anti-islanding detection. 
The signal characteristics we report were observed over relatively short time intervals 
on a single PV system, which means that they certainly cannot be considered as 
representative of all systems. But the fact that they were all found on the first system we 
examined, suggests that signals in other systems are likely also affected, although 
maybe not for the same reasons and not in the same proportions. Further evidence 
needs to be gathered from other operating PV systems before more general statements 
can be made.  
To explore how measurement errors can arise in PV monitoring systems, we simulated 
their operation using a wide range of sampling intervals and archive intervals, and using 
several different filtering options. We saw how the anti-islanding system perturbations 
dominated the measurement errors in AC power over a specific range of sampling 
rates, and found that a simple two-pole low-pass filter preceding the analog-to-digital 
conversion could be tuned to reduce those measurement errors. Furthermore, we 
showed that the low-pass filter could be tuned to reduce the measurement error at any 
sampling rate. As PV monitoring systems often have sampling rates that are too low to 
capture rapid fluctuations in irradiance and power, the addition of a low-pass filter 
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presents itself as a possible solution to obtaining more accurate average values for 
many signals.  
Because there is a strong link between various parameters of a monitoring system and 
the quality of the archived values, is very important to know what those parameters are. 
Documentation for PV monitoring systems should always include specifications of 
filtering methods, sampling rates, summary calculations, archive rates and time stamp 
conventions, and this metadata should always accompany the data files that are 
produced.  
Module-Level Automatic IV Tracer Evaluation 
The results of a development effort to produce and characterize in-situ module level IV 
tracers are described in “In-Situ Module-Level IV Tracers for Novel PV Monitoring.”  In 
this work, Sandia partnered with Stratasense LLC to investigate the benefits of 
automatic, module-level current-voltage (I-V) curve tracers for system monitoring. 
Module I-V curves offer significant detection advantages over other monitoring methods 
and the in-situ design adds ease to the implementation of the tracers into operational 
PV arrays.  
The module level I-V tracers are designed to regularly perform in-situ I-V traces at the 
module-level for modules connected in series to an inverter. These traces are taken 
regardless of load type, allowing nearly uninterrupted power production. When multiple 
units are connected to modules in a string, each module is disconnected and swept 
individually, which allows the current and voltage to the inverter to remain within the 
maximum power-point tracking operating window. Each trace causes a module bypass 
lasting less than two seconds.   
To test the capabilities of the IV tracers, we performed several tests using a 15-tracer 
testbed. These tests were designed to collect module-scale I-V curves and investigate 
the ability to identify specific problems within an array that might be “invisible” with only 
system-level monitoring. The tests consisted of applying partial shading to selected 
modules (using three different approaches) and adding series resistance to a module to 
simulate degradation.  It was demonstrated that the in-situ IV tracers were capable of 
detecting each of these simulated faults. 



DE-EE0025798 
Increasing Prediction Accuracy 

Bruce King 
 

Page 21 of 27 
 

 
Figure 7. Testing string-level automatic IV tracers at Sandia National Laboratories.  

String-Level Automatic IV Tracer Development 
A parallel effort to develop string-level IV tracers was conducted in partnership with 
Pordis, LLC and Delacor LLC.  Sandia provided a list of requirements to Pordis/Delacor 
and they built several prototype devices that have been tested at Sandia.  The devices 
are in the form of a 8-string combiner box that can be controlled to automatically switch 
out one string at a time and perform an IV curve while the inverter still operates on the 
remaining connected strings.  The control software allows the user to trigger IV sweeps 
according to user-defined conditions, such as irradiance level and or timing and 
frequency.  For example, the unit can be programmed to perform an IV curve three 
times per day, 1 hour apart when and if the irradiance is above 900 W/m2.  The user 
has full control of the unit.  A final prototype was delivered to Sandia and we are testing 
it on one of the RTC systems in NM.  Several US companies (e.g. Sun Edison) have 
expressed interest to test units.   
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Figure 8. Model of the Multi-string IV tracer built by Pordis LLC and Delacor LLC.  The 
bottom board handles the string switching while the top board holds the IV sweep 
circuit. 
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Accomplishments:  
Peer-Reviewed Journal Articles: 
D. Riley, C.W. Hansen, “Sun-Relative Pointing For Dual-Axis Solar Trackers 

Employing Azimuth and Elevation Rotations,” ASME Journal of Solar Energy 
Engineering, vol. 137, 2015 

J. S. Stein and B. H. King, “Modeling for PV plant optimization,” in Photovoltaics 
International magazine, Solar Media Ltd. 19th, pp. 101-109, 2013 

Conference Publications: 
R. Andrews, J. Stein, C. Hansen, D. Riley, “Introduction to the Open Source PV_LIB for 

Python Photovoltaic System Modeling Package,” 40th IEEE Photovoltaic Specialists 
Conference, Denver CO, 2014 

A. Driesse, J. S. Stein, D. Riley, C. Carmignani, “Monitoring Current, Voltage and Power 
in Photovoltaic Systems,” 42nd IEEE Photovoltaic Specialists Conference, New 
Orleans, LA, 2015 

A. Driesse, W. Zaaiman, D. Riley, N. Taylor and J. S. Stein, “Indoor and Outdoor 
Evaluation of Global Irradiance Sensors,” 31st European Photovoltaic Solar Energy 
Conference, Hamburg, Germany, 2015 

M. G. Farr and J. S. Stein, “Spatial Variations in Temperature across a Photovoltaic 
Array,” 40th IEEE Photovoltaic Specialists Conference, Denver CO, 2014 

B. R. Fisher, K. Ghosal, D. Riley, C. Hansen, B. King, S. Burroughs, ”CPV Field 
Performance Modeling using Semprius’ System Performance Model (SPM),” 40th 
IEEE Photovoltaic Specialists Conference, Denver, CO, 2014 

C. W. Hansen and A. Pohl, “Which Models Matter: Uncertainty and Sensitivity Analysis 
for Photovoltaic Power Systems,” 40th IEEE Photovoltaic Specialists Conference, 
Denver CO, 2014 

C. Hansen, M. Farr, L. Pratt, “Correcting Bias in Measured Module Temperature 
Coefficients,” 40th IEEE Photovoltaic Specialists Conference, Denver CO, 2014 

W. F. Holmgren (Department of Atmospheric Sciences, University of Arizona), R. W. 
Andrews (Heliolytics), A. T. Lorenzo (College of Optical Sciences, University of 
Arizona), J.S. Stein, “PVLIB Python 2015,” 42nd IEEE Photovoltaic Specialists 
Conference, New Orleans, LA, 2015 

B. H. King, J. E. Granata and A. J. Luketa-Hanlin, “Systems Long Term Exposure 
Program: Analysis of the First Year of Data,” 39th IEEE Photovoltaic Specialists 
Conference, Tampa, FL, 2013 

B. H. King, D. Riley, C. Hansen, M. Erdman, J. Gabriel and K. Ghosal, “HCPV 
Characterization: Analysis of Fielded System Data,” CPV-10, Albuquerque, NM, 
2014 
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J.E. Quiroz, J.S. Stein, C.K. Carmignani, and Kellen Gillispie (Stratasense LLC), “In-
Situ Module-Level I-V Tracers for Novel PV Monitoring,” 42nd IEEE Photovoltaic 
Specialists Conference, New Orleans, LA, 2015 

D. Riley, “Mapping HCPV Module or System Response to Solar Incident Angle,” 
International Conference on Concentrating Photovoltaics, April 2015 

J. Sutterlueti (Gantner Instruments Environment Solutions GmbH), S. Ransome (Steve 
Ransome Consulting), J. Stein, J. Scholz (Gantner Instruments Environment 
Solutions GmbH), “Improved PV Performance Modelling by Combining the PV_LIB 
Toolbox with the Loss Factors Model (LFM),” 42nd IEEE Photovoltaic Specialists 
Conference, New Orleans, LA, 2015 

J. S. Stein, J. Sutterlueti, S. Ransome, C. W. Hansen and B. H. King, “Outdoor PV 
Performance Evaluation of Three Different Models: Single-diode, SAPM and Loss 
Factor Model,” 28th EU Photovoltaic Solar Energy Conference, Paris, France, 2013 

J. S. Stein, S. McCaslin, C. W. Hansen, W. E. Boyson and C. Robinson, D., “Measuring 
PV System Series Resistance Without Full IV Curves.” 40th IEEE Photovoltaic 
Specialists Conference, Denver CO, 2014 

Sandia Technical Publications: 
C. W. Hansen and D. Riley, “Technical Memo: Performance Model for Semprius 

Module,” SAND2013-9078P, Sandia National Labs, Albuquerque, NM, 2013 
C. W. Hansen, A. Pohl, and D. Jordan, “Uncertainty and Sensitivity Analysis for 

Photovoltaic System Modeling,” SAND2013-10358, Sandia National Labs, 
Albuquerque, NM, 2013 

D. Riley and C.W. Hansen, “Sun-Relative Pointing for Dual-Axis Solar Trackers 
Employing Azimuth and Elevation Rotations,” SAND2014-3242, Sandia National 
Labs, Albuquerque, NM, 2014 

C. W. Hansen and C. M. Martin, “Photovoltaic System Modeling: Uncertainty and 
Sensitivity Analysis.” SAND2015-6700, Sandia National Labs, Albuquerque, NM, 
2015 

M. S. Lave, “Albedo and Diffuse POA Measurements to Evaluate Transposition Model 
Uncertainty.” SAND2015-8803, Sandia National Labs, Albuquerque, NM, 2015 
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Path Forward:  
Several efforts in this research program were approved for carryover activities to extend 
into FY16.  These include: 
Task 1: PV Sensor project - The purpose of this effort is to obtain a more 
comprehensive understanding of the characteristics of commercial irradiance sensors 
used for PV system monitoring.  Per the SOPO, we initiated an international 
collaboration with the European Joint Research Centre in Ispra, Italy, leveraging 
research funding from the European Union Sophia Project.  The outdoor testing at 
Sandia will serve to both corroborate indoor measurements and evaluate additional 
characteristics.  Sandia has already completed irradiance sensor indoor and 
characterizations.  Per the SOPO, we are preparing to install the sensors on a fixed tilt 
array in FY15, and collect data for a minimum of 6 months, as required to meet the 
research goals.  The original schedule slipped because of a delay in receiving these 
sensors from our European partners.  We have worked hard to complete the 
characterization (the bulk of the work) in a shorter time.  In FY16 we will maintain the 
sensor array for at least 6 months, collect the data, provide analysis support and return 
the sensors to Europe at the conclusion of the project. 
Task 2: Performance Modeling Textbook – We are currently under contract to Wiley to 
write a textbook on PV Performance Modeling.  There is very high interest in this topic 
from academia and practitioners, and no such textbook currently exists.  Three major 
chapters have been drafted by the main authors (Joshua Stein and Cliff Hansen), but 
substantial work remains.  The original schedule was delayed is due to multiple 
competing priorities.  The publisher, Wiley, has agreed to reassess the schedule at the 
start of 2016.  Both authors are committed to finishing the project. 
In addition to carryover activities, the PV Performance Modeling Collaborative has 
grown into a very active group in the past three years and Sandia believes that it would 
be unfortunate and unwise to abandon our leadership role in this organization.  Annual 
workshops on PV performance modeling are increasingly popular and influential with 
the events becoming the main venue for PV performance modelers to communicate and 
network.  Many of the new features being added to the widely used models had their 
impetus at one of our PVPMC workshops.  The most recent workshop held in Cologne, 
Germany was no exception.  New ideas for including spectral mismatch corrections as a 
function of weather measurements were discussed and the major model developers 
committed to adding this capability to future releases.  Sandia has committed to hold the 
next workshop in Santa Clara in early May 2016.  DOE has agreed to offer some 
funding to support a limited effort going forward.  Sandia plans to provide a new 
proposal to increase this base funding to fully take advantage of the momentum 
generated in this group so that technical results get transferred to the commercial 
models rapidly and developers and financers can benefit from the increases in accuracy 
as a result. 
Finally, Sandia will continue to represent the US and the DOE as part of the IEA PVPS 
Task 13 working group on PV performance and reliability.  This working group will 
remain active through the middle of 2017 and possibly beyond, if the work is extended. 
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Sandia’s representative, Joshua Stein will continue to attend meetings and even is 
planning on hosting a meeting in New Mexico in September 2016.  DOE has agreed to 
fund this continuation through the end of FY16.   Sandia will encourage DOE to 
continue this funding next year to make sure there is continuity till the end of the task. 
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